ASYMMETRY AND PROJECTION CONSTANTS OF BANACH SPACES

BY

Y. GORDON[†]

ABSTRACT

We discuss various asymmetry constants of finite-dimensional Banach spaces in a more generalized frame than that of [2], and solve a problem raised in [7] by finding an increasing sequence of Banach spaces whose diagonal asymmetry constants tend to infinity.We investigate the question of whether the projection constant of every *n*-dimensional Banach space is strictly less than \sqrt{n} , and show that this is so when $n = 2$.

1. Introduction

We shall use the concept of normed linear ideals of operators to generalize the results of [2] on asymmetry constants. For a detailed discussion on normed linear ideals of operators we refer the reader to the works of Grothendieck, Pietsch [13] and Schatten.

Let *L(E, F)* denote the Banach space of linear bounded operators from a Banach space E to a Banach space F . For every pair of Banach spaces E and F , let there be given a norm $\alpha_{E,F}$ defined on a given linear subspace $A(E,F)$ of $L(E,F)$, such that

a) If $u \in A(E, F)$, $v \in L(X, E)$, and $w \in L(F, Y)$, then $wuv \in A(X, Y)$ and $\alpha_{X,Y}(wuv) \leq \|w\| \|v\| \alpha_{E,F}(u).$

b) If $u \in A(E, F)$, then $\alpha(u) \ge ||u||$.

c) If $u \in L(E, F)$ is of rank one, then $\alpha_{E,F}(u) = ||u||$.

The pair $\langle A, \alpha \rangle$ is called a normed linear ideal of operators (N.L.I.O.) c.f. [13]. Given a N.L.I.O. $\langle A, \alpha \rangle$, the conjugate ideal $\langle A^{\Delta}, \alpha^{\Delta} \rangle$ is defined as in [4]: $T \in A^{\Delta}(E, F)$ if and only if there is an $\mathcal{S} > 0$ such that for every finite rank $L \in L(F, E)$ the inequality

 \dagger The research for this paper was partially supported by NSF-GP-34193. Received March 27, 1972 and in revised form June 19, 1972

 $|\text{trace } (LT)| \leq \mathcal{S}_{\alpha}(L),$

holds, and $\alpha^{\Delta}(T)$ is defined as inf \mathscr{S} , taken over all possible \mathscr{S} . We shall use the following result:

PROPOSITION 1. Let $\langle A, \alpha \rangle$ be a N.L.I.O. and E and F be finite-dimensional *Banach spaces. Then* $(L^{A}(E, F), \alpha^{A})$ *is a Banach space which may be identified* with the conjugate space $(L(F, E), \alpha)^*$ where the correspondence is given by

$$
\langle S, T \rangle = \text{trace}(ST)
$$

for every $S \in (L(F, E), \alpha)$, $T \in (L(E, F), \alpha^{\Delta})$.

Some well-known examples of N.L.I.O.'s which we use here are:

1) (Π_n, π_n) $(1 \leq p \leq \infty)$ the ideal of *p*-absolutely summing operators [11, 12, 16].

2) (N_p, v_p) $(1 \leq p \leq \infty)$ the ideal of p-nuclear operators [11, 16].

3) (I_p, i_p) $(1 \leq p \leq \infty)$ the ideal of p-integral operators [11, 16], that is, operators $u \in L(E, F)$ for which there is a probability measure space (Ω, Σ, μ) and operators $v \in L(E, L_{\infty}(\Omega, \mu))$ and $w \in L(L_n(\Omega, \mu), F'$ such that $wjv = iu$, where $j: L_{\infty}(\Omega, \mu) \to L_{\nu}(\Omega, \mu)$ and $i: F \to F''$ are the canonical injections, and where $i_{p}(u)$ is defined as inf $||w|| ||v||$ taken over all such factorizations. Observe that if F is reflexive, $i_{\infty} = c$ which is the extension norm defined for each $u \in L(E, F)$ as the infimum of all λ such that whenever E_0 is a Banach space containing E as a closed linear subspace, u has an extension $\tilde{u} \in L(E_0, F)$ with norm $\leq \lambda$.

When either E or F is finite-dimensional, $\Pi_{p}(E,F) = N_p(E,F) = I_p(E,F)$ $(1/p + 1/p' = 1)$ with equality of norms, in particular $\pi_1^{\Delta} = v_{\infty} = i_{\infty} = c$ in this case $[11, 16]$.

We recall now some definitions of asymmetry $[2]$. Let E be a Banach space and G a (multiplicative) group of operators in *L(E, E). G'* denotes the set of all $t \in L(E, E)$ which commute with every $g \in G$. G_E denotes the set of all isometries of E. We say E has enough symmetries if G_E consists only of the scalar multiples of the identity operator i_E on E.

The asymmetry constant $s(E)$ is defined as the infimum of all $\lambda > 0$ for which there is a group $G \subseteq L(E, E)$ of invertible "onto" operators such that $\sup \{ ||g||; g \in G \} \leq \lambda$, and $G' = \{ \alpha i_E \}.$

If E is a Banach space with basis $B = \{e_i\}$, and σ is a finite permutation of the integers, then the operator $g_{\sigma} \in L(E, E)$ is defined by $g_{\sigma}(e_i) = e_{\sigma(i)}$, and the diagonal asymmetry constant $\delta(B)$ is defined as sup_{σ} $|| g_{\sigma} ||$. If $\varepsilon = (\varepsilon_i)$ is a sequence

of ± 1 , where $\varepsilon_i = 1$ except for a finite number of i for which $\varepsilon_i = -1$, then $g_{\varepsilon} \in L(E, E)$ is defined by $g_{\varepsilon}(e_i) = \varepsilon_i e_i$, and the coordinate asymmetry constant *x(B)* is defined as $\sup_{\varepsilon} ||g_{\varepsilon}||$. Note that $s(E) \leq \delta(B)x(B)$ for every basis B [2].

The diagonal asymmetry constant of E, $\delta(E)$, is defined as inf{ $\delta(B)$; B is a basis for E , and the coordinate (or unconditional) asymmetry constant $x(E)$ as inf $\{x(B); B \text{ is a basis for } E\}.$

If $\langle A, \alpha \rangle$ is a N.L.I.O. and i_E the identity operator on E, then $\alpha(E)$ will denote $\alpha(i_E)$, $\lambda(E) = c(i_E)$ will denote the projection constant of E. The distance coefficient between isomorphic Banach spaces E and F is defined by $d(E, F)$ = $\inf ||t|| ||t^{-1}||$, where t is any isomorphism of E onto F.

We consider two problems raised in [7]: Is there a sequence E_n $n = 1, 2, \cdots$ of finite-dimensional real Banach spaces such that

- 1) $\delta(E_n) \to \infty$?
- 2) $x(E_n) \rightarrow \infty$?

It was shown in [2], that there is a sequence E_n for which $s(E_n) \to \infty$. We prove here, Theorem 4, that for this sequence also $\delta(E_n) \to \infty$. Our results differ from those of [2] mainly because there is no known relationship between the asymmetry constants $\delta(E)$, $x(E)$ and $s(E)$. It is therefore theoretically possible for any one of these constants to be arbitrarily large for suitable E 's, while the other two constants remain bounded or small in comparison. However, we do not know of finite-dimensional examples which demonstrate these phenomena.

Theorems 2, 3 and 5 relate $\alpha(E)$, $\alpha^{A}(E)$ and dim (E) to each one of the three asymmetry constants. Their applications are useful and we illustrate some of them in Corollaries 3 and 4 and Theorems 4 and 7. In section 3 we discuss the constant $c_n = \max{\{\lambda(E); \dim(E) = n\}}$. It is an open and apparently difficult question whether c_n is strictly less than \sqrt{n} for each $n = 2, 3, \dots$. We prove in Theorem 8 that $c_2 < \sqrt{2}$; in fact, $c_2 < 1.414211$.

2. Asymmetry constants

THEOREM 1 [2]. $s(E) = \inf \{ d(E, F); F \text{ is a Banach space with enough } \}$ *symmetries}.*

The following is a generalization of [2, Th. 6].

THEOREM 2. If E is an n-dimensional Banach space, and $\langle L(E, E), \alpha \rangle$ is *a N.L.I.O., then*

$$
n \leq \alpha(E)\alpha^{2}(E) \leq n(s(E))^{2}.
$$

PROOF. By Proposition 1,

$$
\alpha(i_E)\alpha^{\Delta}(i_E) \geq \text{trace}(i_E \cdot i_E) = \text{trace}(i_E) = n.
$$

Let F be any *n*-dimensional Banach space with enough symmetries. Since G_F is a compact group, there is a unique normalized positive Haar measure *dg* on G_F . By Proposition 1, there is an operator $u \in L(F, F)$ with $\alpha^{\Delta}(u) = 1$ and $\alpha(F) = \text{trace}(u)$.

Let $v = \int_{G_F} g^{-1} u g dg$. Since $v \in G'_F$, therefore $v = \lambda i_F$ for some scalar λ , where λ is given by:

$$
\alpha(F) = \operatorname{trace}(u) = \operatorname{trace}(v) = \lambda \cdot n.
$$

It then follows that

$$
n^{-1}\alpha(F)\alpha^{\Delta}(F) = \alpha^{\Delta}(v) \leq \int_{G_F} \alpha^{\Delta}(g^{-1}ug) dg \leq \int_{G_F} ||g^{-1}|| a^{\Delta}(u) || g || dg = 1.
$$

But $\alpha(E) \leq d(E, F)\alpha(F)$, and similarly for α^{Δ} ; therefore,

$$
\alpha(E)\alpha^{\Delta}(E) \leq (d(E,F))^2 \alpha(F)\alpha^{\Delta}(F) = n(d(E,F))^2,
$$

and the result follows by Theorem 1. Q.E.D.

COROLLARY 1. If *E* has enough symmetries, $\alpha(E)\alpha^{A}(E)=n$.

THEOREM 3. *If E is as in Theorem 2, then*

$$
n \leq \alpha(E)\alpha^{\Delta}(E) \leq 3n(\delta(E))^3.
$$

PROOF. By Proposition 1, there is an operator $u \in L(E, E)$, $\alpha^{\Delta}(u) = 1$ such that $\alpha(E) = \text{trace}(u)$. Let $B = \{e_i\}_{i=1}^n$ be any basis for E, and put $\delta = \delta(B)$. Let

$$
v=(n!)^{-1}\Sigma g_{\sigma}^{-1}ug_{\sigma},
$$

where σ ranges over all the permutations of 1, 2, \cdots , n. Clearly there exist scalars a, b such that $v = ai_E + bw$, where w is the rank one projection of E onto the space spanned by the vector $e = n^{-1} \sum_{i=1}^{n} e_i$, given by $we_i = e$ $(i = 1, 2, \dots, n)$. Now $\alpha(E)$ = trace(u) = trace(v) = an + b, and therefore $v = ai_E + (\alpha(E) - an)w$. Also

$$
\alpha^{\Delta}(v) \leq (n!)^{-1} \sum \alpha^{\Delta}(g_{\sigma}^{-1}ug_{\sigma}) \leq (n!)^{-1} \sum \|g_{\sigma}^{-1}\| \|g_{\sigma}\| \alpha^{\Delta}(u) \leq \delta^2.
$$

On the other hand,

 $\| w \| \alpha^{\Delta}(v) \geq a^{\Delta}(wv) = |a + \alpha(E) - an | \alpha^{\Delta}(w) = |a + \alpha(E) - an | \| w \|,$ so that $\alpha^{\Delta}(v) \geq |a + \alpha(E) - an|$. In addition

$$
\alpha^{\Delta}(v) \geq |a| \alpha^{\Delta}(i_E) - |\alpha(E) - an| \alpha^{\Delta}(w) = |a| \alpha^{\Delta}(E) - |\alpha(E) - an| \|w\|,
$$

$$
\|w(\sum x_i e_i)\| = n^{-1} \sum x_i \|e_i\| = (n!)^{-1} \sum_{\sigma} \sum_i x_i e_{\sigma(i)} \|
$$

$$
\leq (n!)^{-1} \sum_{\sigma} \| \sum_i x_i e_{\sigma(i)} \| \leq \delta \| \sum_i x_i e_i \|
$$

so that $\|w\| \leq \delta$, and this implies that $\alpha^{\Delta}(v) \geq |a|\alpha^{\Delta}(E)-|\alpha(E)-an|\delta$. Combining the inequalities we obtain

$$
\delta^2 \geq \max\left\{\left| \left. a(n-1) - \alpha(E) \right|, \, \left| \left. a \right| \alpha^{\Delta}(E) - \left| \left. an - \alpha(E) \right| \delta \right. \right\}.
$$

If we assume $\alpha^{\Delta}(E) > \delta$, otherwise the proof is complete, then a simple calculation shows that the minimum of the function

$$
f(x) = \max \{ |x(n-1) - \alpha(E)|, |x| \alpha^{A}(E) - |xn - \alpha(E)| \delta \}
$$

in the interval $-\infty < x < \infty$ is the value

$$
A = \min_{\varepsilon = \pm 1} \frac{\alpha(E)(\alpha^{\Delta}(E) + \varepsilon \delta)}{n\delta + n - 1 + \varepsilon \alpha^{\Delta}(E)},
$$

so it follows that $\delta^2 \geq A$.

If the minimum for A is attained when $\varepsilon = 1$, then

$$
(n\delta + n - 1 + \alpha^{\Delta}(E))\delta^2 \geq \alpha(E)\alpha^{\Delta}(E) + \alpha(E)\delta,
$$

and since v_1 is the greatest cross norm [5], therefore $\alpha^{\Delta}(E) \le v_1(E) = n$ [2], hence $\alpha^{\Delta}(E) \leq n$, from which it follows that

$$
3n\delta^3 \ge (n\delta + n - 1 + \alpha^4(E))\delta^2 \ge \alpha(E)\alpha^4(E).
$$

If the minimum for A is attained when $\varepsilon = -1$, then

$$
2n\delta^3 \ge (n\delta + n - 1 - \alpha^4(E))\delta^2 \ge \alpha(E)\alpha^4(E) - \alpha(E)\delta \ge \alpha(E)\alpha^4(E) - n\delta^3,
$$

and this concludes the proof. Q.E.D.

COROLLARY 2. *If* $\delta(E) = 1$, then $n \leq \alpha(E)\alpha^{\Delta}(E) \leq 3n$.

Denote by l_p^n ($1 \leq p \leq \infty$) the *n*-dimensional l_p space and given two Banach spaces E and F, $E \oplus F$ will denote their direct sum normed by $\|(x,y)\|$ $=$ max $\{\Vert x \Vert, \Vert y \Vert\}$. Theorem 4 solves problem (1) mentioned earlier.

THEOREM 4. *If* $1 \leq p \neq q \leq \infty$, then there exists a constant $c_{p,q} > 0$ such *that for every n*

$$
\delta(l_p^n \oplus l_q^n) \geq c_{p,q} \begin{cases} n^{\lfloor 1/3p - 1/3q \rfloor}; & \text{if } (p-2)(q-2) \geq 0 \\ \max\{n^{1/3p - 1/6}, n^{1/6 - 1/3q}\}; & \text{if } q \geq 2 \geq p. \end{cases}
$$

PROOF. We shall apply Theorem 3 with $\alpha = \pi_1$, the 1-absolutely summing norm, for which we noted above that $\pi_1^{\Delta} = i_{\infty} = c$, so that $\pi_1^{\Delta}(E) = \lambda(E)$.

Let $E_n = l_p^* \oplus l_q^n$. It was shown in [2] that if $(p-2)(q-2) \ge 0$ then

$$
\lambda(E_n)\pi_1(E_n) \sim n^{1+|1/q-1/p|}
$$

(\sim means that the ratio of both sides is bounded from 0 and ∞ as $n \to \infty$), and that if $q \ge 2 \ge p$ then

$$
\lambda(E_n)\pi_1(E_n) \sim n^{3/2-1/q}
$$

so the result follows by Theorem 3. Q.E.D.

Concerning the asymmetry x we have

THEOREM 5. Let E be an n-dimensional Banach space with basis $B = \{e_i\}_1^n$ *and* $\langle L(E, E), \alpha \rangle$ *be an N.L.I.O. For any subset* $J \subseteq \{1, 2, \dots, n\}$ *let* $E_J = [e_i; i \in J]$ and

 $a_j = \min\{\max(\alpha^{\Delta}(E_1); i \subseteq J); J \text{ contains } j \text{ elements}\}\} = 1, 2, \cdots, n.$

Then

$$
(x(B))^3 \sum_{1}^{n} a_j^{-1} \geq \alpha(E).
$$

PROOF. By Proposition 1 there exists $u \in L(E, E)$ with $\alpha^{\Delta}(u) = 1$ and $\alpha(E)$ = trace(u). Let $v = 2^{-n} \sum_{\varepsilon} g_{\varepsilon}^{-1} u g_{\varepsilon}$, where ε ranges over all vectors $(\pm 1, \pm 1, \dots, \pm 1)$, and let $\{e_i\}$ be the associated sequence of coefficient functionals to $\{e_i\}$. For v thus defined there exist scalars λ_i^0 such that $ve_i = \lambda_i^0 e_i$ for every i. Let $I \subseteq J$ be any subsets of $\{1,2,\dots,n\}$ and $w_I: E \to E_I$ and $v_I: E_I \to E_I$ be the natural projection and embedding operators respectively.

Let $z: E_I \to E_I$ be an arbitrary operator. Since $||w_I|| \le x$ (where $x = x(B)$), we get $\alpha(v_1zw_1) \le x || v_1 || \alpha(z) = x\alpha(z)$. In addition, for any g_{ϵ} :

$$
\alpha^{\Delta}(v v_{J} w_{J} g_{\epsilon}) \leq 2^{-n} \sum_{\epsilon} \|g_{\epsilon}^{-1}\| \|g_{\epsilon} v_{J} w_{J} g_{\epsilon}\| a^{\Delta}(u) \leq x^{2},
$$

since $|| g_{\varepsilon} v_J w_J g_{\varepsilon}|| \le x$. So combining the inequalities

$$
x^{3}\alpha(z) \geq \sup_{\epsilon'} \text{trace}(vv_{J}w_{J}g_{\epsilon'}v_{I}zw_{I})
$$

=
$$
\sup_{\epsilon'} \sum_{i \in I} \lambda_{i}^{0}\epsilon'_{i}\langle ze_{i}, e_{i}' \rangle = \sum_{i \in I} |\lambda_{i}^{0}| |\langle ze_{i}, e_{i}' \rangle|
$$

$$
\geq (\min_{j \in J} |\lambda_{j}^{0}|) \text{trace}(z),
$$

where $I \subseteq J$ are arbitrary. This implies that $x^3 \geq (\min_{j \in J} |\lambda_j^0|) \alpha^{\Delta}(E_j)$, and maximizing over $I \subseteq J$

$$
x^3 \geqq (\min_{j \in J} |\lambda_j^0|) \max_{I \subseteq J} \alpha^{\Delta}(E_I) \geqq (\min_{j \in J} |\lambda_j^0|) a_{|J|}
$$

where $|J|$ denotes the number of elements in J, and since also J is arbitrary and

$$
\sum_{1}^{n} \lambda_i^0 = \text{trace}(v) = \text{trace}(u) = \alpha(E)
$$

we finally get

$$
x^3 \geqq \max_{J} \{ (\min_{j \in J} |\lambda_j^0|) a_{|J|} \} \geqq \min \left\{ \max_{J} (a_{|J|} \min_{j \in J} |\lambda_j|) ; \sum_{i=1}^n \lambda_i = \alpha(E) \right\}.
$$

We may assume without loss of generality that the minimum on the λ_i is attained for $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, and then

$$
x^3 \geq \min\{\max_{1 \leq i \leq n} a_i \lambda_i; \sum_{1}^{n} \lambda_i = \alpha(E), \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0\}
$$

and by virtue of $a_{i+1} \ge a_i$ ($i = 1, \dots, n-1$), the expression is minimized when $a_i\lambda_i = a_1\lambda_1$ for each i, that is

$$
a_i\lambda_i = \alpha(E) \left(\sum_{1}^{n} a_j^{-1} \right)^{-1},
$$

and the theorem is established. Q.E.D.

It was shown in [2] that for any *n*-dimensional subspace $E \subset l_p$ (1 $\leq p \leq 2$), $\lambda(E) \geq K_G^{-1}\sqrt{n}$, where K_G is the Grothendieck constant. Thus applying Theorems 2, 3, and 5 we obtain

COROLLARY 3. Let E be any *n*-dimensional subspace of l_p ($1 \leq p \leq 2$), and *let* $\mu(E) = \min\{(s(E))^2, 3(\delta(E))^3, 2(x(E))^3\}$. *Then*

$$
K_G\mu(E)\sqrt{n}\geq \pi_1(E)\geq \sqrt{n}.
$$

PROOF. $\pi_1(E) \ge \sqrt{n}$ by [2], and Theorems 2 and 3 yield that

$$
n \min \left\{ (s(E))^2, 3(\delta(E))^3 \right\} \geq \pi_1(E) \lambda(E) \geq \pi_1(E) K_G^{-1} \sqrt{n}.
$$

Applying Theorem 5 with $\alpha = \pi_1$, we have $\alpha^{\Delta} = c$, hence $a_j \ge K_G^{-1} \sqrt{j}$, $j = 1, \dots, n$, therefore

$$
\pi_1(E)(x(B))^{-3} \leq \sum_{i=1}^n a_i^{-1} \leq K_G \Sigma j^{-1/2} \leq 2K_G \sqrt{n}
$$

from which it follows that $\pi_1(E) \leq 2K_G(x(E))^3 \sqrt{n}$. Q.E.D.

REMARKS. We do not know whether $\pi_1(E)n^{-1/2}$ is uniformly bounded for every *n*-dimensional $E \subset l_p$. However, if l_p contains a sequence E_n of *n*-dimensional subspaces such that $\pi_1(E_n)n^{-1/2} \to \infty$, then $\mu(E_n)$, and in particular, $x(E_n)$, tend to infinity. Corollary 3 tells us also that $\pi_1(E_n) \sim \sqrt{n}$ whenever $\{\mu(E_n)\}\$ is bounded. It is in fact easy to construct $E_n \nightharpoonup l_p$ such that $s(E_n)$, $\delta(E_n)$ are unknown, or at least difficult to evaluate, but $x(E_n) = 1$ trivially.

It was proved by Kwapien [10], that every map from every *C(S)* space into L_q is s-absolutely summing up for all $\infty > s > q > 2$. Rosenthal [14] has recently shown that $\pi_s(T) \leq c_{a,s} ||T||$ for all $T \in L(C(S), L_q)$, where

$$
c_{q,s} = c_q((q-1)(s-1)/(s-q))^{1-1/s}
$$

and *cq* depends only on q. Applying this we get

THEOREM 6. Let E be any n-dimensional subspace of l_q (2 < $q < \infty$). Then $\lambda(E) \geq c_{a.s}^{-1} n^{1/s}$ for every s, $q < s < \infty$.

PROOF. Let $j: E \to C(S)$ be any isometric embedding in a $C(S)$ space, and P be any bounded linear projection of $C(S)$ onto $j(E)$. $j^{-1}P$ maps $C(S)$ into l_a , hence $\pi_s(P) \leq \pi_s(j^{-1}P) \leq ||j^{-1}P||c_{q,s}$. But clearly $\pi_s(P) \geq \pi_s(E)$, and by [2] $\pi_{s}(E) \geq n^{1/s}$, so that $n^{1/s} \leq ||P|| c_{q,s}$. Q.E.D.

That $\lambda(l_n^m) \sim n^{1/q}$ was proved by Rutovitz [15] (cf. also [2]). Defining $\mu(E)$ as in Corollary 3 we obtain

COROLLARY 4. Let $2 < q < s < \infty$ and E be any n-dimensional subspace of *lq. Then*

$$
\sqrt{n} \leq \pi_1(E) \leq c_{q,s} \mu(E) n^{1-1/s}.
$$

PROOF. $\pi_1(E) \ge \sqrt{n}$ by [2], and Theorems 2 and 3 yield that

$$
n \min \left\{ (s(E))^2, 3(\delta(E))^3 \right\} \geq \pi_1(E) \lambda(E) \geq c_{q,s}^{-1} n^{1/s} \pi_1(E).
$$

Again applying Theorem 5 with $\alpha = \pi_1$, we have by Theorem 6 $a_j \geq c_{q,s}^{-1} j^{1/s}$ $j = 1, 2, ..., n$, hence

$$
\pi_1(E)(x(B))^{-3} \leq \sum_{i=1}^n a_i^{-1} \leq c_{q,s} \Sigma j^{-1/s} \leq 2c_{q,s} n^{1-1/s}
$$

which implies $\pi_1(E) \leq 2c_{a,s}(x(E))^{3} n^{1-1/s}$. Q.E.D.

REMARKS. $\pi_1(l_n^n) \sim n^{1-1/q}$ and $\pi_1(l_2^n) \sim n^{1/2}$ [3], and both spaces are isometric to subspaces of $L_q[0, 1]$. However, also in this case we do not know whether

$$
\sup \ \{\pi_1(E); \ E \subset l_q, \ \dim(E) = n\} \sim n^{1-1/q}
$$

If l_q contains a sequence E_n of *n*-dimensional subspaces such that $\pi_1(E_n)n^{1/q-1} \to \infty$ then by Corollary 4, $\mu(E_n)$, and therefore also $x(E_n)$, tend to infinity; for it is clear from the definition of $c_{q,s}$ that there is a sequence $s_n \downarrow q$ such that $\pi_1(E_n) n^{1/s_n - 1} c_{q,s}^{-1} \to \infty$.[†]

^{*t} Added in proof:* It is known that the unconditional basis constant of $L(l_p^n, l_q^n)$ </sup> $(1 < p \leq \infty, 1 \leq q < \infty)$ tends to ∞ with *n* [18].

3. Projection constants

Let $c_n = \max\{\lambda(E); E \text{ is a real }n\text{-dimensional Banach space}\}\$. For $n \geq 2$, it is known that $c_n \leq \sqrt{n}$ [2,9], yet it is unknown whether $c_n = \sqrt{n}$ for some *n*. We shall show in Theorem 8 that $c_2 < \sqrt{2}$. The proof utilizes John's Theorem [8]. Let us first construct an n -dimensional Banach space which has the largest known projection constant: Let $E(\alpha)$, $1 < \alpha < n$, be the space whose points $x = (x_1, \dots, x_n)$ are normed by

$$
\|x\| = \max \left\{\max_{1 \leq i \leq n} |x_i|, \alpha^{-1} \sum_{1}^{n} |x_i|\right\}.
$$

THEOREM 7. If $1 \leq p < \infty$, and $1/p + 1/p' = 1$, then $(n^{-1}\nu_p(E(\alpha)))^p = (\pi_p(E(\alpha)))^{-p}$ $=$ max min $\{\mu\alpha^{-p} + (1-\mu)n^{-1}, \mu(\pi_p(l_1^n))^{-p} + (1-\mu)\alpha^p n^{-p}\}.$ $0\leq \mu \leq 1$

PROOF. Let S be the unit ball of $E(\alpha)$. The set of the extremal points of S^* , K^* , consists of all points derived from the two points $R = (1,0,\dots,0)$ and $Q = \alpha^{-1}(1,1,\dots,1)$ by all the possible permutations and changes of signs on their coordinates. We assign to Q , and to each point thus derived from Q , the same positive point mass λ , and we assign to R, and to each point derived from R, the same positive point mass w. The total measure assigned to K^* is then $m(K^*) = 2nw + 2^n\lambda$. By [3]

$$
(\pi_p(E(\alpha)))^{-p} = \sup_m \inf_{\|x\|=1} \int_{K^*} |\langle x, a \rangle|^p dm(a)
$$

where *m* ranges on all probability measures on K^* which are invariant to isometries; that is, on all measures m as defined above for Q , R , and their derived points, where $0 \le \lambda \le 2^{-n}$ and $m(K^*) = 1$. It then follows that

$$
(\pi_p(E(\alpha)))^{-p} = \sup_{0 \leq \lambda \leq 2^{-n}} \min_{\|x\| = 1} \left[\lambda \sum_{\|e_i\| = 1} \alpha^{-p} \Big| \sum_{i=1}^n \varepsilon_i x_i \Big|^{p} + 2w \sum_{i=1}^n |x_i|^p \right].
$$

Knowing K^* , we have that the equations of the supporting planes to S are $x = \pm 1$, $i = 1, 2, \dots, n$, and $\sum_{i=1}^{n} \varepsilon_i x_i = \alpha$, $\varepsilon_i = \pm 1$.

Since the function

$$
f(x) = \left(\int_{K^*} \left| \langle x, a \rangle \right|^p dm(a) \right)^{1/p}
$$

is convex, therefore its minimum on $\partial S = \{x; ||x|| = 1\}$ is attained in our case

at the center of gravity of one of the $(n-1)$ -dimensional faces of S which, by applying a suitable isometry, we take to be either on the plane $x_1 = 1$ or on the plane $\sum_{i=1}^{n} x_i = \alpha$.

The center of gravity of the extremal points of S on $x_1 = 1$ is the point $A = (1,0,\dots,0)$, and denoting $\mu = 2^n \lambda$, we have $f(A) = (\mu \alpha^{-p} + (1-\mu)n^{-1})^{1/p}$.

The point B , the center of gravity of the extremal points of S on $\sum_{i=1}^{n} x_i = \alpha$, is found as follows: If α is an integer, that is $\alpha = [\alpha]$, then the extremal points of S on $\sum_{i=1}^{n} x_i = \alpha$ are all those of the form (x_1, \dots, x_n) where $x_i \in \{0, 1\}$ and $\sum_{i=1}^{n} x_i = \alpha$. There are $\binom{n}{\alpha}$ such points and easy calculation shows that $B = \alpha n^{-1}(1, 1, ..., 1)$.

If $\alpha \neq [\alpha]$, then the extremal points are those derived from

$$
\underbrace{(1,1,\cdots,1,\alpha-\lbrack\alpha\rbrack,0,\cdots,0)}_{\lbrack\alpha\rbrack}
$$

by all the permutations on the coordinates. There are $n(\frac{n-1}{\lceil \alpha \rceil})$ such points, and again one has that $B = \alpha n^{-1}(1, 1, \dots, 1)$. We then get

$$
(f(B))^p = \lambda \sum_{\varepsilon_i} \alpha^{-p} (\alpha/n)^p \Big| \sum_{i=1}^n \varepsilon_i \Big|^p + 2w (\alpha/n)^p \, n
$$

= $\mu 2^{-n} n^{-p} \sum_{i=0}^n {n \choose i} |n-2i|^p + (1-\mu) (\alpha/n)^p$
= $\mu (\pi_p(l_1^n))^{-p} + (1-\mu) \alpha^p n^{-p}$

by virtue of [3]. Using the fact that $\pi_p^{\Delta} = v_{p'}$, and Corollary 1, the assertion of of the theorem follows from

$$
\pi_p(E(\alpha)))^{-p} = \max_{0 \le \mu \le 1} \min \{ f(A))^p, (f(B))^p \}.
$$
 Q.E.D.

COROLLARY 5. $\lambda(E(\sqrt{n})) = (n - \lambda(l_1^n))/(2\sqrt{n} - \lambda(l_2^n) - 1).$

PROOF. Take $p = 1$ in Theorem 7, and use the facts that $\lambda(E(\alpha)) = v_{\infty}(E(\alpha))$, and $\pi_1(l_1^n)\lambda(l_1^n) = n$. Q.E.D.

COROLLARY 6. $\lim_{n\to\infty} \lambda(E(\sqrt{n}))/\sqrt{n} = (2 - \sqrt{2/n})^{-1} \approx 0.832$.

PROOF. Use Corollary 5 and the result $\lambda(l_1)n^{-1/2} \rightarrow_{n \to \infty} \sqrt{2/\pi}$ [6]. Q.E.D. Note that $(2 - \sqrt{2/\pi})^{-1}$ is larger than $\sqrt{2/\pi}$ which is attained for the space l_1^n (and l_2^n). Our main result in this section is

THEOREM 8. $4/3 \leq c_2 < \sqrt{2}$.

That $c_2 \ge 4/3$ is due to the fact that the projection constant of the space whose unit ball is the regular hexagon in the plane is $4/3$ [2,3]. To prove the other inequality we need two lemmas. Lemma 1 is due to John [8], and was written in this form in [2].

LEMMA 1. *Let F be a real n-dimensional Banach space with unit ball S. Let* $\|\cdot\|_2$ be the Hilbert norm on F with the property that the unit ball B_2 in $(F, \| \cdot \|_2)$ is the ellipsoid of least volume containing S. Then there exist $s \leq n(n+1)/2$ *distinct points* x^1, x^2, \dots, x^s *in F, and positive scalars* $\lambda_1, \lambda_2, \dots, \lambda_s$ *such that*

1) $||x^r||_F = ||x^r||_F = ||x^r||_2 = 1$ for each $r = 1, ..., s$.

 $\sum_{r}^{\infty} \lambda_r \langle x, x^r \rangle x^r$ for 2) $x = \sum_i \lambda_i \langle x, x' \rangle x$ for each $x \in F$ (\langle , \rangle is the inner product defined λ , $\parallel \lambda \parallel$ $by \parallel \cdot \parallel_2$).

- 3) $\sum_{1} \lambda_{r} = n$.
- 4) $x^{i} \neq -x^{j}$ if $i \neq j$.

LEMMA 2. Let E be a real 2-dimensional Banach space with $\lambda(E) = \sqrt{2}$ and let $F = E'$. Then under the conditions of Lemma 1, $s = 2$ and there exists $y_0 \in \partial B^* \cap \partial B_2$ (∂B^* is the boundary of the unit ball of $E' = F$) such that $|\langle y_0, x^1 \rangle| = |\langle y_0, x^2 \rangle| = 1/\sqrt{2}.$

PROOF. Embed E isometrically in l_{∞} . Then, for every projection $P: l_{\infty} \to E$, $||P|| \ge \lambda(E) = \sqrt{2}$. Since $||x^i||_{E'} = 1$ there exist Hahn-Banach extensions $\tilde{x}^i \in (l^{\infty})'$ of x^i having norms = 1. Define the projection $P: l_{\infty} \to E$ by

$$
Px = \sum_{r=1}^{s} \lambda_r \langle x, \tilde{x}^r \rangle x^r, \quad x \in l_\infty
$$

where x' are viewed as points in E. Let $y_0 \in \partial B^*$ be such that

$$
\sum \lambda_r |\langle x^r, y_0 \rangle| = \max \{ \sum \lambda_r |\langle x^r, y \rangle|; y \in \partial B^* \}.
$$

By Lemma 1, Hölder's inequality and the fact that $B_2 \supset B^*$, it follows that

$$
\sqrt{2} = \lambda(E) \le \sup \{ \langle Px, y \rangle; \parallel x \parallel_{\infty} = 1, y \in \partial B^* \}
$$

= $\sup \{ \sum \lambda_i \langle x, \tilde{x}^i \rangle \langle x^i, y \rangle; \parallel x \parallel_{\infty} = 1, y \in \partial B^* \}$
 $\le \sup \{ \sum \lambda_i | \langle x^i, y \rangle |; y \in \partial B^* \} = \sum \lambda | \langle x^i, y_0 \rangle |$
 $\le (\sum \lambda_i)^{1/2} (\sum \lambda_i \langle x^i, y_0 \rangle^2)^{1/2} = \sqrt{2} || y_0 ||_2$

$$
\leq \sqrt{2} \|y_0\|_{E'} = \sqrt{2}.
$$

The equality in Hölder's inequality implies that $|\langle x^i, y_0 \rangle| = c$ for each $i=1, \dots, s$, and that $||y_0||_2=1$. Hence

$$
1 = \langle y_0, y_0 \rangle = \sum \lambda_i \langle x^i, y_0 \rangle^2 = (\sum \lambda_i) c^2 = 2c^2;
$$

therefore, $c = 2^{-1/2}$. Since $|\langle x^i, y_0 \rangle| = 1/\sqrt{2}$ and the x^i do not all lie on a straight line through the origin, we obtain from (4) that $s = 2$. O.E.D.

By a suitable rotation of the x, y axes and replacing x^i by $-x^i$ if necessary, we may and shall assume henceforth that $y_0 = (1,0)$ and $x^1 = (1/\sqrt{2},-1/\sqrt{2})$ and $x^2 = (1/\sqrt{2}, 1/\sqrt{2})$.

PROOF OF THEOREM 8. Assume to the contrary that $\lambda(E) = \sqrt{2}$ for some space E. Let y_0 , x^i (i = 1, 2) be as in Lemma 2, and let the boundary ∂B of the unit ball of E intersect the positive y-axis at $T = (0, t)$, where $t \ge 1$ (since $B \supseteq B_2$). Since $||x^i||_2 = ||x^i||_E = 1$ and $B \supseteq B_2$, therefore the tangent line l_i to the circle B_2 drawn through the point x^i (i = 1, 2) supports ∂B . Since $y_0 \in \partial B^* \cap \partial B_2$, therefore $y_0 \in \partial B$. Let h be the tangent line to B_2 through y_0 . Let $P_i = (1, (-1)^i)$ tg($\pi/8$)) (*i* = 1, 2) be the point of intersection of *l_i* and *h*, and g_1 (resp., g_2) be the tangent line to B_2 drawn through $-T = (0, -t)$ (resp., T) which meets B_2 on the left side of the y-axis, and finally, let $Q_i = l_i \cap g_i$ (i = 1, 2).

Since $B \supseteq B_2$ it follows that l_1, l_2 , and h all support B, and therefore B is contained in the convex hull of the set $A = \{\pm T, \pm P_1, \pm P_2, \pm Q_1, \pm Q_2\}$. Let Γ be the parallelogram whose vertices are $\pm y_0$ and $\pm T$, and α be the angle $\angle Oy_0T$. Clearly $\Gamma \subseteq B$. We intend to find a number $\beta > 0$ such that $\beta \Gamma \supseteq B$. Convex $(A) \supseteq B$; therefore, if $\beta > 0$ is the least positive number such that $\beta \Gamma \supseteq$ convex (A), then at least one point of the set $\{\pm Q_1, \pm Q_2, \pm P_1, \pm P_2\}$ belongs to the boundary $\partial(\beta \Gamma)$ of $\beta \Gamma$. Since $\alpha \ge \pi/4$, therefore $P_2 \in \partial(\beta \Gamma)$ from which it follows immediately that $\partial(\beta \Gamma)$ intersects the positive x-axis at the point $\beta = 1 + \text{tg}(\pi/8) \text{ctg} \alpha$.

 $\beta \Gamma \supseteq B \supseteq \Gamma$ implies that $\beta \geq d(E, l^2) \geq \lambda(E) = \sqrt{2}$, that is tg($\pi/8$)ctg $\alpha \geq$ $\sqrt{2} - 1 = \text{tg}(\pi/8)$; therefore, $\alpha \leq \pi/4$, which implies that $\alpha = \pi/4$ and $T = (0, 1)$, and so $Q_i = (tg(\pi/8), (-1)^i)$ $(i = 1, 2)$. Therefore $A \subseteq (sec(\pi/8))B_2$, and so $(\sec(\pi/8))B_2 \supseteq B \supseteq B_2$, hence $\sec(\pi/8) \supseteq d(E, l_2^2) \supseteq \sqrt{2}/\lambda(l_2^2)$, however $\lambda(l_2^2)=4/\pi$ [6], and this results in the contradiction $\sec(\pi/8) \geq (\pi\sqrt{2})/4$. Q.E.D.

REMARK. A finer argument also based on Lemma 1 shows that $c_2 < 1.414211$, however, the proof is much more complicated and we omit it. As in [1] or [2],

it follows that if $E \supset F$ are Banach spaces and $\dim(E/F) = 2$, then there is a projection P of E onto F with norm $\lt 2.414211 \lt (1 + \sqrt{2})$.

ACKNOWLEDGEMENT

The author is grateful to Professor J. Lindenstrauss for his helpful advice and discussion on the subject matter.

REFERENCES

t. W. J. Davis, *Remarks on finite rank projections,* to appear.

2. D. J. H. Garling and Y. Gordon, *Relations between some constants associated with finite dimensional Banach spaces,* Israel J. Math. 9 (1971), 346-361.

3. Y. Gordon, *On p-absolutely summing constants of Banach spaces*, Israel J. Math. 7 (1969), 151-163.

4. Y. Gordon, D. R. Lewis and J. R. Retherford, *Banach ideals of operators with applications to the finite dimensional structure of Banach spaces,* Israel J. Math. 13 (1973), 348-360.

5. A. Grothendieck, *Résumé de la théorie métrique des produits tensoriels topologiques*, Bol. Soc. Mat. São Paulo 8 (1956), 1-79.

6. B. Grllnb~tum, *Projection constants,* Trans. Amer. Math. Soc. 95 (1960), 451-465.

7. V. I. Gurarii, M. I. Kadec, and V. I. Macaev, *On Banach-Mazurdistance between certain Minkowski spaces,* Bull. Acad. Polon. Sci. S6r. Sci. Math. Astronom. Phys. 13 (1965), 719-722.

8. F. John, *Extremum problems with inequalities as subsidiary conditions,* Courant Anniversary Volume, Interscience, New York, 1948, 187-204.

9. M. I. Kadec, to appear in Funckional Anal. i Prilozen.

10. S. Kwapien, *On a theorem of L. Schwartz and its applications to absolutely summing operators,* Studia Math. 38 (1970),193-201.

11. A. Persson and A. *Pietsch,p-nukleare und p-integrale Abbildungen in Banachriiumen,* Studia Math. 33 (1969), 19-62.

12. A. Pietsch, *Absolute p-summierende Abbildungen in normierten Riiumen,* Studia Math. 28 (1967), 333-353.

13. A. Pietsch, *Adjungierte narmierten Operatorenideale,* Math. Nach. 48 (1971), 189-211.

14. H. P. Rosenthal, *On subspaces of* L^p , to appear.

15. D. Rutovitz, *Someparametersassociatedwithfinite-dimensionalBanach spaces,* J. London Math. Soc. 40 (1965), 241-255.

16. P. Saphar, *Produits tensoriels d'espaces des Banach et classes d'applications lindaires,* Studia Math. 38 (1970), 71-100.

17. R. Schatten, *A theory of cross-spaces,* Princeton, 1950.

18. Y. Gordon and D. R. Lewis, *Absolutely summing, LI factorizable operators and applications,* to appear.

LOUISIANA STATE UNIVERSITY

BATON ROUGE, LA, U.S.A. 70803