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ABSTRACT 

We discuss various asymmetry constants of finite-dimensional Banach spaces 
in a more generalized frame than that of [2], and solve a problem raised in 
[7] by finding an increasing sequence of Banach spaces whose diagonal asym- 
metry constants tend to infinity.We investigate the question of whether the pro- 
jection constant of every n-dimensional Banach space is strictly less than V/~, 
and show that this is so when n = 2. 

1. Introduction 

We shall use the concept  o f  no rmed  linear ideals o f  opera tors  to generalize 

the results o f  [2] on asymmet ry  constants.  Fo r  a detailed discussion on normed  

linear ideals o f  operators  we refer the reader to the works  of  Grothendieck ,  

Pietsch [13] and Schatten. 

Let L(E, F) denote the Banach space of  linear bounded  opera tors  f rom a Banach 

space E to a Banach space F .  Fo r  every pair  o f  Banach spaces E and F ,  let there 

be given a no rm cte, F defined on a given linear subspace A(E,F) of  L(E,F), 

such that  

a) I f  uEA(E,F), v~L(X,E), and w~L(F,Y), then wuv~A(X,Y) and 

 x.,(wuv) <__ II w II IIv fl 
b) I f  u ~A(E,F), then ct(u) > II u II 
c) I f  u ~L(E,F) is o f  rank one, then ~E,F(U) = ][ U II. 
The pair  (A,  c~) is called a no rmed  linear ideal o f  opera tors  (N.L. I .O.)  c.f. [13]. 

Given a N .L . I .O .  ( A , ~ ) ,  the conjugate ideal (AA,~ A) is defined as in [4]:  

Te AA(E, F) if and only if there is an ~ > 0 such that  for  every finite rank  

L ~ L(F, E) the inequality 
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]trace (LT)] =< .,9%(L), 

holds, and 0tA(T) is defined as inf 6 a,  taken over all possible 6 a. We shall use 

the following result: 

PROPOSITION 1. Let ( A , a )  be a N.L.I.O. and E and F be finite-dimensional 

Banach spaces. Then (La(E,F),aa) is a Banach space which may be identified 

with the conjugate space (L(F,E),ct)* where the correspondence is given by 

(S, T )  = trace (ST) 

for every S ~ (/_(F, E), ~), TE (L(E, F), etA). 

Some well-known examples of N.L.I.O. 's which we use here are: 

1) (Hp, np) (1 =< p < oo) the ideal of p-absolutely summing operators [11, 

12, 16]. 

2) (N n, Vp) (i __< p < oo) the ideal of p-nuclear operators [11, 16]. 

3) (Ip, ip) (1 =< p __< oo) the ideal of p-integral operators [11, 16], that is, 

operators u~L(E,F)  for which there is a probability measure space (~,Z,/~) 

and operators v ~ L(E, L~(~, #)) and w c L(Ln(~, p), F") such that wjv = iu, where 
j :  Loo(fl, p) --* Lv(f~,/~) and i: F ~ F" are  the canonical injection s, and where ip(u) 

is defined as inf[] w II I!v II taken over all such factorizations. Observe that if F is 

reflexive, ioo = c which is the extension norm defined for each u ~ L(E,F) as 

the infimum of all 2 such that whenever Eo is a Banach space containing E as a 

closed linear subspace, u has an extension ff~L(Eo, F) with norm < 2. 

When either E or F is finite-dimensional, H ~ ( E , F ) =  Nn(E,F ) = In(E,F ) 

(1/p + l/p' = 1) with equality of norms, in particular n~ = voo = io~ = c in 

this case [-11, 16]. 

We recall now some definitions of asymmetry [2]. Let E be a Banach space 

and G a (multiplicative) group of operators in L(E, E). G' denotes the set of all 

t E L(E, E) which commute with every ff ~ G. Gg denotes the set of all isometrics 

of E.  We say E has enough symmetries if G~ consists only of the scalar multiples 

of the identity operator i~ on E.  

The asymmetry constant s(E) is defined as the infimum of all 2 > 0 for which 

there is a group G ~_ L(E,E) of invertible "on to"  operators such that 

sup {[Ig 11; g e G} =< 2, and G' = {ale}. 

If E is a Banach space with basis B = {e~}, and a is a finite permutation of 

the integers, then the operator g~ e L(E, E) is defined by g~(e~) = e~(o, and the 

diagonal asymmetry constant 6(B)is defined as sup~ I[ g~ ]]. I fe  = (e,)is a sequence 
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of __+ 1, where e~ = 1 except for a finite number of i for which ei = - 1 ,  then 

g, c L(E,E) is defined by g~(e~) = e~e~, and the coordinate asymmetry constant 

x(B) is define& as sup~ II go !1. Note that s(E) < 6(B)x(B) for every basis B [2]. 

The diagonal asymmetry constant of E,  tS(E), is defined as inf{6(B); B is a 

basis for E}, and the coordinate (or unconditional) asymmetry constant x(E) 

as inf {x(B); B is a basis for E}. 

If  (A, ~) is a N.L.I.O. and ie the identity operator on E, then ~(E) will denote 

~(iE), 2(E) = c(ie) will denote the projection constant of E. The distance coeffi- 

cientbetween isomorphic Banach spaces E and F is defined by d(E,F) = 

inf[] t II [I t-iLl, where t is any isomorphism of E onto F .  

We consider two problems raised in [-7]: Is there a sequence En n = 1,2, ... 

of finite-dimensional real Banach spaces such that 

1) ~(E.) ~ oo: 

2) x(E,) -+ oo ? 

It was shown in [2], that there is a sequence E, for which s(E,)--+ m .  We 

prove here, Theorem 4, that for this sequence also a(Eo)--, oo. Our results differ 

from those of [2] mainly because there is no known relationship between the 

asymmetry constants a(E), x(E) and s(E). It is therefore theoretically possible 

for any one of these constants to be arbitrarily large for suitable E's, while the 

other two constants remain bounded or small in comparison. However, we do 

not know of finite-dimensional examples which demonstrate these phenomena. 

Theorems 2, 3 and 5 relate a(E), ~a(E) and dim (E) to each one of the three 

asymmetry constants. Their applications are useful and we illustrate some of 

them in Corollaries 3 and 4 and Theorems 4 and 7. In section 3 we discuss the 

constant c, = max{,a.(E); dim(E) = n}. It is an open and apparently difficult 

question whether c, is strictly less than x/n for each n = 2, 3 , . . . .  We prove in 

Theorem 8 that c2 < x/2; in fact, c2 < 1.414211. 

2. Asymmetry constants 

THEOREM 1 [2]. s(E) = inf{d(E,F);  F is a Banach space with enough 

symmetries}. 

The following is a generalization of [2, Th. 6]. 

THEOREM 2. I f  E is an n-dimensional Banach space, and (L(E ,E) ,~ )  is 

a N.L.I.O., then 
n < ~ (E)aa(E) < n(s(E)) 2 . 
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PROOF. By Proposition 1, 

ct(iE)~A(iE) >= trace(iE-i~) = trace(i~) = n. 

Let F be any n-dimensional Banach space with enough symmetries. Since Gr 

is a compact group, there is a unique normalized positive Haar measure dg 

on Ge. By Proposition 1, there is an operator u E L(F,F) with etA(u) = 1 and 

~(F) = trace(u). 

Let v = f ~ g - l u g d g .  Since v~G'~, therefore v = Ai~ for some scalar A, 

where 2 is given by: 

~(F) = trace (u) = trace (v) = 2 " n .  

It then follows that 

n-'ot(F)aa(F) = eta(v) < I ~a(g-'ug)dg <= f {I g-l{I a'x(u) [I g II dg = 1. 
JGF JGF 

But e(E) -<_ d(E, F)a(F), and similarly for ~ta; therefore, 

e(E)ctA(E) < (d(E, F)) 2 a(F)aA(F) = n(d(E, F)) 2 , 

and the result follows by Theorem 1. Q.E.D. 

COROLLARY 1. If E has enough symmetries, o~(E)~A(E)= n. 

THEOREM 3. I f  E is as in Theorem 2, then 

n <= e(E)eA(E) < 3n(6(E)) 3 . 

PROOF. By Proposition 1, there is an operator u EL(E,E) ,  eA(u)= 1 

such that c~(E) = trace(u). Let B = {el}~' be any basis for E,  and put 5 = 5(B). 

Let 
v = (n!)-lZg'~lug~, 

where tr ranges over all the permutations of l, 2, ..., n. Clearly there exist scalars 

a, b such that v = ai~ + bw, where w is the rank one projection of E onto the 

space spanned by the vector e = n - '  Z ~ ei, given by wei = e (i = 1,2, ..., n). 

Now0t(E) = trace(u) = trace(v) = an + b, and thereforev = alp+ (~x(E)-an)w. 

Also 

aa(v) _-< (n!) -1 Y~ aA(g:'ug,) <--__ (n!) -1 Z I!g: '  II IIg~ll ~(u)  ~ 

On the other hand, 

l{ w 1t a (v) >_ . f fwv)= ]a + la +  (E)-an I 1t wit, 
so that a~(v) >= [ a + ct(E) - an]. In addition 
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llw( z x,e,)l[ =.-11 r.x, llle, ll =(nt) -1 1] ~; Z x,e.t,,H 
i 

a t 

so that Ilwll z and this implies that an(v)> [al~'(E)-[=(E)-an[a.  
Combining the inequalities we obtain 

~>__ max{la(n-l)-=(E)] ,  [ a l= ' (E) - lan -  =(E)I~/. 
If  we assume an(E) > 6, otherwise the proof is complete, then a simple cal- 

culation shows that the minimum of  the function 

f(x) = max{ lx(n- l ) -~(E)  l, Ixl '(e)-Ixn - ~(E)la} 
in the interval - oo < x < oo is the value 

~(E)(~A(E) + ~6) 
A = min 

,=~1 n6 + n - 1 + e:ta(E) 

so it follows that 62 >_ A. 

If the minimum for A is attained when e = 1, then 

(n(5 + n -  1 + ~a(E)),52 > ~(E):ta(E) + ~(E)fi, 

and since vt is the greatest cross norm [5], therefore ~a(E) < v l ( E ) =  n 

I-2], hence ~a(E) < n, from which it follows that 

3n63 __> (nil + n -  1 + ~xa(E))fi 2 ~ o~(E)~a(E). 

If the minimum for A is attained when e = - 1, then 

2n63 > (nil + n -  1 - cca(E))~i 2 > c~(E)oca(E) - ~(E)fi > ~(E)~a(E) - nfi 3 , 

and this concludes the proof. Q.E.D. 

COROLLARY 2. I f  6(E) = 1, then n < a(E)aa(E) < 3n. 
Denote by l~, (1 < p < oo) the n-dimensional Ip space and given two Banach 

spaces E and F ,  E @ F  will denote their direct sum normed by II(x,y)ll 
= max  ilxil, i[ y li . Theorem 4 solves problem (1)ment ioned earlier. 

THEORV.M 4. I f  1 < p q: q < O0, then there exists a constant %.q > 0 such 

that for  every n 

>_ cp,q~nll/3p-l/3gl; if  ( p - 2 ) ( q - 2 )  > 0 
~5(I~ @ l~) 

L max(nl/3p-1/6,  nl/6-1/3q}; i f  q>= 2 > p .  
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PROOF. We shall apply Theorem 3 with ~t = n~, the 1-absolutely summing 

norm, for which we noted above that 7t~ = i~ = c, so that n~(E) = 2(E). 
n Let E, = l~ff)lq. It was shown in [-2] that if ( p - 2 ) ( q - 2 )  > 0 then 

).(E,)rtt(E, ) ... n t 4 I I/q - l ip  l 

(--- means that the ratio of both sides is bounded from 0 and ov as n ~ or),  

and that if q > 2 > p then 

2(E.)nl(E, ) .., n 3 / 2 - 1 / , /  

so the result follows by Theorem 3. Q.E.D. 

Concerning the asymmetry x we have 

f n THEOREM 5. Let E be an n-dimensional Banach space with basis B = ~e~}, 

and (L(E,E),ot) be an N.L.I.O. For any subset j m__ {l ,2 , - . . ,n} let 

Es = [ei; i ~ J ]  and 

a~ = min{max(ctA(E1); I '~  J ) ;  J contains j elements} j = 1,2,...,n. 

T h e n  

(x(B)) s ~ af  1 >= oe(E). 
1 

PROOF. By Proposition 1 there exists u~L(E ,E)  with ~A(u)= 1 and 

~(E) = trace(u).  Let v = 2-"  Y.~9[au9~, where e ranges over all vectors 

(+1 ,  + I , . . . ,  _+ 1), and let {el} be the associated sequence of coefficient func- 

tionals to {ei}. For v thus defined there exist scalars 2 ~ such that vet = 2~ 

for every i. Let I c_ j be any subsets of { 1,2,.. . ,  n} and w1: E ~ E~ and v1: E~ --* E 

be the natural projection and embedding operators respectively. 

Let z: El -~ Et be an arbitrary operator. Since [] w 11i z x (where x = x(/3)), 

we get oe(vtzw I) <= x ]! v, ]! or(z) = xot(z). In addition, for any 9~,: 

~A(VVsW,gc) < 2-"  Z I! g;-, II II o,".,w.,g,. II a"(u)=< .,,~, 
sin~ !f ~.,,,w,g~. I! -< " So combining the inequalities 

x 3:~(z) > sup trace (vvswjg,,vtzwi) 
Z" 

sup ]~ -o , , ,o ' = , . ,~,<ze:e,> = Z I", II <=e,.e,>l 
," I E l  1 r  

>___ (min ] ;t~ 
./~.r 

where I m j are arbitrary. This implies that x 3 > (minj.~s])~ and 
m~ximizing over I c j 
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x 3 > (min I ;t ~ 1)maxc~'X(Er)> (min [)`o ])al:l 
j ~ J  l ~ - J  j e J  

where ]J] denotes the number of elements in J ,  and since also J is arbitrary and 

)`o = trace (v) = trace (u) = 0~(E) 
1 

we finally get 

{ma minl)`j]); ~ )`i = •(E)} . x3>max{(min[)`~ > min x(alJIj~J 1 
J j ~ J  

We may assume without loss of generality that the minimum on the )̀ ~ is attained 

for 21 --> ).2 ->- "'" --> )`., and then 

n 

x a = > min{max ai)`i; ~ )`i = ~(E), ).1 > = )`2 = > "'" = > )`n ~--- > 0}  
l ~ i < n  1 

and by virtue of ai+l > ai (i = 1 , . . . , n - i ) ,  the expression is minimized when 

a~2~ = al)`1 for each i, that is 

ai)` ~ = ~(E) aZ  1 , 
1 

and the theorem is established. Q.E.D. 

It was shown in [2] that for any n-dimensional subspace E c l v  (1 < p < 2), 

)`(E) > K~tx/n ,  where Ko is the Grothendieck constant. Thus applying Theo- 

rems 2, 3, and 5 we obtain 

COROLLARY 3. Let E be any n-dimensional subspace of lp (1 < p <2) ,  and 

let p(E) = min{(s(E)) 2, 3(fi(E)) 3, 2(x(E))3}. Then 

KGp(E)x/n >_ ~I(E) >= x/n. 

PROOF. ~q(E) > x/n by [2], and Theorems 2 and 3 yield that 

n min {(s(E)) 2, 3(fi(E)) 3} _>_ n~(E))`(E) > n~(E)K~ ~x/n. 

Applying Theorem 5 with ~ = zh, we have ~A c, hence aj > K~*x/ f  

j -- 1,..., n, therefore 

~,(/0(x(B)) -3 <_ a i ~ <__ K~Zj -~/2 < 2KG4n 
1 

from which it follows that zq (E)<  2K~(x(E))3x/n. Q.E.D. 

REMARKS. We do not know whether zq(E)n -1/2 is uniformly bounded for 

every n-dimensional E ~ lp. However, if I v contains a sequence E, of n-dimension- 

al subspaces such that n,(E,)n -~/2 - ,  o0, then p(E,), and in particular, x(E,), 

tend to infinity. Corollary 3 tells us also that n,(E~) ~ x/n whenever {~(E.)} is 
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bounded. It is in fact easy to construct En c Ip such that s(E-~), ~(En) are unknown, 

or at least difficult to evaluate, but x(E~) -- 1 trivially. 

It was proved by Kwapien [10], that every map from every C(S) space into 

Lq is s-absolutely summing up for all oo > s > q > 2. Rosenthal [14] has recently 

shown that ~z~(T) _< Cqs !1 T II for all T~ L(C(S),Lq),  where 

Cq~ = Cq((q - 1) ( s -  1)/(s - q))l - 1/~ 

and cq depends only on q. Applying this we get 

THEOREM 6. Let E be any n-dimensional subspace of  lq (2 < q < oo). Then 

).(E) > c-1 nl/~ for  every s, q < s < oo q,$ 

PROOF. Let j :  E ~ C(S) be any isometric embedding in a C(S) space, and P 

be any bounded linear projection of C(S) onto j (E) .  j - I P  maps C(S) into lq, 

hence rc~(P) < ns ( j - lP )  < I[j-lPIleq, . But clearly rCs(P ) > n~(E), and by [2] 

n~(E) > n 1/~, so that n 1/~ < I[ P [I cq,s. Q.E.D. 

That 2(l~) ,,~ n ~/~ was proved by Rutovitz [15] (cf. also [2]). Defining #(E) 

as in Corollary 3 we obtain 

COROLLARY 4. Let 2 < q < s < oo and E be any n-dimensional subspace of  

lq. Then 
x/n =< nl(E) < cq.,p(E)n 1-~/s. 

PROOF. tel(E) > ~/n by [2], and Theorems 2 and 3 yield that 

n min {(s(E)) 2, 3(6(E)) 3} > rh(E)2(E) >= c~ 1 n~/~rq(E). 

Again applying Theorem 5 with c( -- n l ,  we have by Theorem 6 aj >= cq,~j 1/~ 

j = 1 ,2 , . . . ,n ,  hence 

rCl(E)(x(B)) -3 <= aj 1 <= Cq,sEj-1/s <= 2Cq,snl-1/s 
1 

which implies rq(E) < 2Cq.~(x(E))an 1-1/~ Q.E.D. 

REMARKS. 7Cl(I~)'~ n l -1 /qand  rh(12) ,.~ n 1/213], and both spaces are iso- 

metric to subspaces of Lq[0, 1]. However, also in this case we do not know whether 

sup (rq(E); E c lq, dim(E) -- n} ,-~ n i - l /q  

If  lq contains a sequence E~ of n-dimensional subspaces such that zq(E~)n l/q- 1 ~ 

then by Corollary 4, /~(E~), and therefore also x(En), tend to infinity; for it is 

clear from the definition of Cq,~ that there is a sequence s~ ~q such that 
rq(E,)n 1/~"-1 c -lq,~ ~ oo .t 

t Added in proof." It is known that the unconditional basis constant of L(l~,l~) 
(1 < p < o0, 1 < q < o0) tends to oo with n [18]. 
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3. Projection constants 

Let c. = max{2(E); E is a real n-dimensional Banach space}. For n > 2,  

it is known that c. < ~/n [2, 9], yet it is unknown whether en = x/n for some n. 

We shall show in Theorem 8 that Cz < x/2. The proof utilizes John's Theorem [8]. 

Let us first construct an n-dimensional Banach space which has the largest known 

projection constant: Let E(~), 1 < ~ < n ,  be the space whose points 

x = (xl, " ' , x . )  are normed by 

 lxll =m x{m xlx, J,  lx, J} 
1 g i < - n  1 

THEOREM 7. I f  1 < p < 00, and 1/p + 1/p' = i ,  then 

(n-%f(e(~))) p = (%(E(cO)) -p 

= maxmin {/~-P + (1 - /z )n-1 ,  p(rc,(l~)) -p + ( 1 - p ) ~ P n - ' } .  
0<~-<1 

PROOF. Let S be the unit ball of E(~). The set of the extremal points of S*, K*, 

consists of all points derived from the two points R = (1,0,---,0) and 

Q = g-1(1,1, . . . ,  1) by all the possible permutations and changes of signs on 

their coordinates. We assign to Q, and to each point thus derived from Q, the 

same positive point mass 2, and we assign to R,  and to each point derived from 

R,  the same positive point mass w. The total measure assigned to K* is then 

re(K*) = 2nw + 2"2. By [3] 

t m 

(rrv(E(a)))-P = sup inf I ] ( x , a )  lPdm(a) 
m llxll=l J K* 

where m ranges on all probability measures on K* which are invariant to isomet- 

rics; that is, on all measures m as defined above for Q, R,  and their derived 

points, where 0 < 2 < 2-"  and re(K*) = 1. It then follows that 

(np(E(g)))-P = sup min z + 2w Ix, l']. 
0 < Z < 2 - "  [[xl[ = 1 l e d = l  i=1 i = l  _ 

Knowing K*,  we have that the equations of the supporting planes to S are 

x = + 1, i = 1 ,2 , . . . , n ,  and ~ " eix i = ~ ei = + 1 i = l  ~ - -  " 

Since the function 

f ( x ) =  ( f l , . l ( x , a ) [ P d r n ( a ) ) l / P  

is convex, therefore its minimum on 0S = {x; I!xll = 1} is attained in our case 
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at the center of gravity of one of the (n-1)-dimensional faces of S which, by 

applying a suitable isometry, we take to be either on the plane xa = 1 or on the 

plane ~ x  i = ~ .  

The center of gravity of the extremal points of S on x I = 1 is the point 

A = (1,0,..-,0), and denoting /~ = 2"2, we have f ( A ) =  ( p a - P+  (1 -g )n -1 )  1/p. 

The point B, the center of gravity of the extremal points of S on 

E"I xi = ~, is found as follows: If  ~ is an integer, that is a = [~], then the 

extremal points of S on ~ ]xi  = e are all those of the form (xl, . . . ,x,) where 

x i e {0, 1} and E" t x i = e. There are (~") such points and easy calculation 

shows that B = an-l(1,  1, . . . ,1). 

If  e # [~], then the extremal points are those derived from 

(1,1, ..., 1 , a -  [a],0,  . . . ,0) 
k J , , y .  

n - - 1  by all the permutations on the coordinates. There are n( t~l ) such points, and 

again one has that B = an-l(1,  1, ..., 1). We then get 

n 

( f (B))  p = 2 ~ o:-P(eln)" I Z ei[ t' + 2w(c@) p n 
~i / = 1  

= #(rc,(/]))-' + (1-p)ccPn - '  

by virtue of [3]. Using the fact that r~ = %,, and Corollary 1, the assertion of  

of the theorem follows from 

rcp(E(e)))-" = max min {f(A)) p, (f(B))P}. Q.E.D. 
O _ < / l < l  

COROLLARY 5. = (n - -  - -  1 ) .  

PROOF. Take p =  1 in Theorem 7, and use the facts that 2(E(~)) = Voo(E(a)), 

and rq(l])2(/]) = n. Q.E.D. 

COROLLARY 6. lim,_.~ 2(E(x/n))/~n = (2 - x/2]-~)-' z 0.832. 

PROOF. Use Corollary 5 and the result 2(lOn -x/z -,,_.~,,/2/rc [6]. Q.E.D. 

Note that ( 2 -  x/2~) -~ is larger than x/2/~z which is attained for the space 

I~ (and l~). Our main result in this section is 

THEOREM 8. 4/3 < c 2 < x/2. 
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That c2 __-> 4/3 is due to the fact that the projection constant of the space whose 

unit ball is the regular hexagon in the plane is 4/3 [2, 3]. To prove the other 

inequality we need two lemmas. Lemma 1 is due to John [8], and was written 

in this form in [2]. 

LEMMA 1. Let F be a real n-dimensional Banach space with unit ball S.  

Let III1~ be the Hilbert norm on F with the property that the unit ball B 2 in 

(F, II" I[~) is the ellipsoid of least volume containing S.  Then there exist 

s < n(n + 1)/2 distinct points x t, x 2 ..., x ~ in F,  and positive scalars 2x, 22, "", 2~ 

such that 

, II x'll, = II x'll ,  = !! x'l[2 

~; , , 2~ (x, x )x  for 
1 

= 1 for each r =  1, . . . ,s .  

each x e F  ( ( , )  is the inner product defined 2) x =  

by II" 11~). 

3) ]~ 2, = n. 
1 

4) xi r - x  ~ if i C j .  

LEMMA 2. Let E be a real 2-dimensional Banach space with 2(E) = x/2 

and let F = E' .  Then under the conditions of Lemma 1, s = 2 and there exists 

yoeOB*nOB2 (OB* is the boundary of the unit ball of E' = F) such that 

I<yo, x'>l = I<yo, x2>l - 1/ , /~ 

PROOF. Embed E isometrically in l~. Then, for every projection P: l~o ~ E,  

IIP II > 2(E) = ~/2. Since H xi[I ~' = 1 there exist Hahn-Banach extensions 

J?ie(l~) ' of  x i having norms = 1. Define the projection P: l ~ E  by 

Px = ~ 2,(x, 2")x' ,  x~l |  
r = l  

where x' are viewed as points in E.  Let Yo e tgB* be such that 

2 ,1(x ' ,yo)  I = max{ ~ 2 , [ ( x ; y ) [ ;  y~OB*}. 

By Lemma 1, H61der's inequality and the fact that B 2 = B*, it follows that 

x/2 = 2(E) _-< sup( (Px ,  y ) ;  Ilxll= = 1, yeOB*} 

-- sup~ :c a,<x,~'><x',y>; IIx[l~-- a, y~oB,)  
< sup( Z 2,[(xi, y ) ] ;  y~OB*} = 2 2  [<x',yo>l 
< ( ~ 2,)1/2(Z2,(x ' ,yo)2)  1/2 = ,/~llyol[~ 



Vol. 14, 1973 PROJECTION CONSTANTS 61 

--< IL y o liE, - -  

The equality in H61der's inequality implies that I < x ' , y o > [  = c for each 

i =  1, ... s, and that II Yo ll:-- 1. Hence 

1 = (Yo, Yo) = ~' }~i(Xi,yO) 2 -- ( ]~ J'i) c2 = 2c2; 

therefore, c -- 2-~/2. Since ] ( x  i, Yo> I -- l/x/2 and the x i do not all lie on a straight 

line through the origin, we obtain from (4) that s -- 2. Q.E.D. 

By a suitable rotation of the x, y axes and replacing x i by - x  t if necessary, 

we may and shall assume henceforth that Yo = (1,0) and x 1 = (1 /x /2 , -  1/x/2) 

and x 2 = (l/x/2, 1/x/2 ) . 

PROOF OF THEOREM 8. Assume to the contrary that 2(E) --x/2 for some space 

E.  Let Yo, x~ (i = 1,2) be as in Lemma 2, and let the boundary aB of the unit 

ball of E intersect the positive y-axis at T = (0, t), where t > 1 (since B ~_ B2). 

Since I[ xi [12 = [1 xi lIE = 1 and B ~_ B2, therefore the tangent line li to the circle 

B 2 drawn through the point x i (i -- 1,2) supports ~B. Since Yo E aB* n aB2, 

therefore Yo ~ dB. Let h be the tangent line to B 2 through Yo. Let Pi = (1, ( -  1) i 

tg(rc/8)) (i = 1, 2) be the point of intersection of I i and h, and gl (resp., 92) be the 

tangent line to B 2 drawn through - T  = ( 0 , -  t) (resp., T) which meets B 2 on 

the left side of the y-axis, and finally, let Qi = li n gi (i = 1, 2). 

Since B _ B 2 it follows that 11,/2, and h all support B, and therefore B is con- 

tained in the convex hull of the set A = {+_T, +-P1, - P 2 ,  ---QI, q-Q2}- Let F 

be the parallelogram whose vertices are _+ Yo and _+ T, and ~ be the angle ~ Oyo T. 

Clearly F ~ B. We intend to find a number fl > 0 such that flF _ B. Convex 

(A) ~_ B; therefore, if fl > 0 is the least positive number such that f lF  ~_ 

convex (A), then at least one point of the set {+-Qa, -{-Q2, - P 1 ,  q-P2} belongs 

to the boundary 8(flF) of flF. Since a > re/4, therefore P2 ~ a(flr') from which 

it follows immediately that O(flF) intersects the positive x-axis at the point 

fl = 1 + tg(rt/8) ctg a. 

flF _ B ~_ F implies that fl >= d(E, l~) > 2(E) = x/2, that is tg(Tc/8)ctg~ => 

x/2 - 1 =tg(rc/8); therefore, a < r~/4, which implies that a = re/4 and T = (0, 1), 

and so Qi=(tg(~/8),  ( - 1 )  i) (i -- 1,2). Therefore A c_ (sec(n/8))B2, and so 

(sec(rc/8))B 2 _D B ~ B 2, hence sec(rc/8) > d(E, 122) >__ x/2/).(/2), however ).(/2)=4/n 

[6], and this results in the contradiction sec (~/8) >__ (rex/2)/4. Q.E.D. 

REMARK. A finer argument also based on Lemma 1 shows that c2 < 1.414211, 

however, the proof is much more complicated and we omit it. As in [1] or [2], 
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it follows that  i f  E ~ F are Banach spaces and  d i m ( E / F )  = 2, then there  is a 

project ion P o f  E onto  F with no rm < 2.414211 < (1 + x/2).  
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